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Where Does Al Happens? SYSPRINT
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« Datais born at the edge

D Ij, P « Pros of processing directly at
the edge:

. Low latency
L\ 2,
@ g7 SE{ . Communication
\ J . Energy efficiency
Privacy

« Compliance to GDPR and
privacy regulation laws

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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loT Data Input to ML Models (Training vs. Inference)
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Endpoints (e.g., Sensors)
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e
Where Does Al Happens? XY SPRINT

Modern models are trained
offline on the cloud and
deployed on the field for
inference on new data
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loT Data Input to ML Models (Training vs. Inference)
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The Edge Intelligence Paradigm

Level 6
All on-device

Reduced amount
or shorten path of

data offloading -

on the cloud

/

Cloud Intelligence
Training and inference on the cloud
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Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019
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Model Inference on the Edge

Edge
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Partial Model % ;

Edge
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Edge-based Device-based Edge-Device Edge-Cloud

Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019
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Technology Highlights
Model Compression Weight pruning and quantization to reduce storage and computation
Edge[] ) . . . _
Server], Model Partition o Computation ofﬂoadmg‘ to the edge server or mobile devices
( e Latency- and energy-oriented optimization :>O
i Model Early-Exit e Partial DNNs model inference 3
e Accuracy-aware
Edge Caching e Fast response towards reusing the previous results of the same task . Center
Input Filtering e Detecting difference between inputs, avoiding abundant computation
Device . . -Ori imizati
Model Selection e Inputs-oriented optimization
e Accuracy-aware
Support for Multi-Tenancy e Scheduling multiple DNN-based task
E d e Resource-efficient
Application-specific Optimization e Optimizations ‘for the specific DNN-based application
e Resource-efficient

Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019
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Adantages of Training on the Edge CA)%SPRINT

Less Conservatlve

Fleet size
Duration of data collection 1 working year / 8h 1.25 working year / 10h
Volume of data generated by a single car 1TB/h 1.5TB/h

Data reduction due to preprocessing 0.0005 0.0008

Research team size 30 40

Proportion of the team submitting jobs 20% 30%

Target training time 7 days 6 days

Number of epochs required for convergence 50 50

Calculations

Total raw data volume 203.1PB 595.1 PB
Total data volume after preprocessing 104 TB 487578
Training time on a single DGX-1 Volta system (8 GPUs) 166 days (Inception V3) 778 days (Inception V3]
113 days [ResNet 50)21 days 528 days (ResNet 50)

(AlexNet) 194 days (AlexNet)

Number of machines [DGX-1 with Volta GPUs) required to achieve target training time for 142 (Inception V3) 1556 [Inception V3)

the team 97 (ResNet 50) 1056 (ResNet 50)

18 (AlexNet) 197 (AlexNet)

Source: NVIDIA https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/
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Model Training on the Edge
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Jechnology

Highlights

Federated Learning

Leave the training data distributed on the end devices

Train the shared model on the server by aggregating locally-computed
updates

Preserve privacy

Cel

Edge I1l—=

Aggregation Frequency Control

Determine the best trade-oll between local update and global parameter
aggregation under a given resource budget
Intelligent communication control

Gradient Compression

Gradient quantization by quantizing each element of gradient vectors to
a finite-bit low precision value

Gradient sparsification by transmitting only some values of the gradient
vectors

DNN Splitting

<~

Select a splitting point to reduce latency as much as possible
Preserve privacy

Knowledge Transfer Learning

First train a base network (teacher network) on a base dataset and task
and then transfer the learned features to a second target network (student
network) to be trained on a target dataset and task

The transition from generality to specificity

O

Gossip Training

Preserve privacy

Random gossip communication among devices
Full asynchronization and total decentralization

——— =19

—
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Why is this a Big Concern? -- I

Forbes c

Clearview AI, The Company
Whose Database Has Amassed

“ : i 3 Billion Photos, Hacked
« “The enormous data that companies feed into Al-

driven algorithms are susceptible to data breaches E—)
aS WeI I .l( ® Listen to article 3 minutes

=i

« “Al may generate personal data [...] created without
the permission of the individual.” ’

in

China Makes Deepfakes and Fake News Illegal

China will treat fake news or video content (including deepfakes) that aren't clearly marked as such as a criminal offense.

-2, 3 K LB
9 deepnudeapp v ’ By Adam Smith Dec 2,2019.6:52p.m.  f in ®

@deepnudeapp B "

Here is the brief history, and the end of DeepNude. We created this project for user's
entertainment a few months ago. We thought we were selling a few sales every month
in a controlled manner. Honestly, the app is not that great, it only works with
particular photos. We never thouaht it would become viral and we would not be able
to control the traffic. W

) 4 Andrew Ng & L 4
Despite the safety mea @Andrew¥Ng
probability that people -

way. Surely some copie: . .
B s thwhosall i I'm glad DgepNude is dead. As a pe_rson zfmd as a‘father, |

any other meanswould  thought this was one of the most disgusting applications of
will not release other v Al To the Al Community: You have superpowers, and what
SKenses toactivate the you build matters. Please use your powers on worthy projects
People who have notye  that move the world forward.

The world is not yet rea 1155 ppg . jun 28 2010 @

Clearview Al, the company whose database has amassed over 3 billion photos, has suffered

adata . [+] GETTY

Clearview Al, the company whose database has amassed over 3

billion photos, has suffered a data breach, it has emerged. The data

Q 8K ) 2K people are Tweeting about this ORIGINAL DEEPFAKE

The Social Impact of Artificial Intelligence and Data Privacy Issues
by Shree Das, 08 September 2020
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Why is this a Big Concern? De-anomymization T8
g
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« “The enormous data that companies feed into Al- _. |
driven algorithms are susceptible to data breaches s N g 0 g
as well.” knowledge € !% 2inv=— g
E | tHe o1 I}

. I
« “Al may generate personal data [...] created without : - | &
the permission of the individual.”

China Makes Deepfakes and Fake News Illegal E
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Here isthe bref istory,and the end of DeepNude. We created this project for ser's IdEI'ItIIIES w

in a controlled manner. Honestly, the app is not that great, it only works with
particular photos. We never thouaht it would become viral and we would not be able
to control the traffic. W

Despite the safety m ﬂ Andrew Ng & L4
prag;bilit;t;a: Py“:l: A @AndrewiNg

::{hse".::'.‘isﬁmi?ﬂf I'm glad DeepNude is dead. As a person and as a father, |

any other meanswould  thought this was one of the most disgusting applications of
will not release other v Al To the Al Community: You have superpowers, and what
Ncenses o sctivabe the you build matters. Please use your powers on worthy projects
People who have notye  that move the world forward.

The world is not yet rea 1155 o . jun 28, 2019 0]

Training set Testing set

uoEzIwALoUE-a]

Q 8K ) 2K people are Tweeting about this

Link MMCs
“ with identities

ORIGINAL DEEPFAKE
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Are you entitled to use those data?

Q FINANCIAL TIMES

GARANTE inserire | US COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT
)
& GPDP | b ——
Microsoft quietly deletes largest public face
recognition data set

L'Autorita ¥ Temi ~ Normativa e provvedimenti ¥ News e comunicazione

Home / Stampa e comunicazione / Comunicato stampa

/ Riconoscimento facciale: Sari Real Time non é conforme alla normativa sulla privacy

Stanford and Duke universities also remove facial recognition data

Riconoscimento facciale: Sari Real
Time non é conforme alla normativa
sulla privacy

[f Ascolta i '

Riconoscimento facciale: Sar
privacy

MNon é favorevole il parere ¢
sull'utilizzo del sistema Sari
sistema, oltre ad essere pri\mL
automatizzato dei dati biometrici per il riconoscimento facciale a fini di
sicurezza, realizzerebbe per come & progettato una forma di sorveglianza
indiscriminata/di massa.

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning
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Facial recognition technology is demonstrated at an exhibition in Fujian province, China © Reuters

£5UN) SPRINT
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Search jobs | @ Signin O, Search I e International edition v

Guardian

For200years

Royal Free breached UK datalaw in 1.6m
patient deal with Google's DeepMind
Information Commissioner’s Office rules record transfer from

London hospital to Al company failed to comply with Data
Protection Act

O 'We underestimated the complexity of the NHS and of the rules around patient data’ -
DeepMind. Photograph: Alamy Stock Photo

London’s Royal Free hospital failed to comply with the Data Protection Act
when it handed over personal data of 1.6 million patients to DeepMind, a
Google subsidiary, according to the Information Commissioner’s Office.
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Federated Learning (FL) G ,\?%SPR/NT

“Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a
central server or service provider.

Each client’s raw data is stored locally and not exchanged or transferred; instead,
focused updates intended for immediate aggregation are used to achieve the
learning objective.”

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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A new paradigm & 3%SPRINT

e FLis fundamentally different from

= EEE%%EE‘.‘E distributed machine learning,
o ol ol el L B .
""--~ C Shhsdn - fgaeenm Ve |
- EEsamae . EWBLS WG - Data are stored in a network

of powerful cloud machines

. Data can be shuffled and
balanced across clients

. Any client has access to any
part of the dataset

. Computation is the bottleneck
. Typically, 1-1000 clients

A. Willing, “Asynchronous distributed deep learning technology,” eenewseurope.com, Aug. 2020
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The general FL pipeline

Model
Selection

Local
Training

]

Aggregate
Updates

Fa
& )% SPRINT

« Model Selection (server)
Define and initialize a global ML
model, then send it to the clients
e Local Training (clients)

Train the global model on private
data, then send the updated model
back to the server

o Aggregate Updates (server)

Combine the local updates into a
single, new, global model, then
repeat the process

A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning
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1. Select a random set of K clients

=a

0 —
L=

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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Federated Averaging C‘ A)%SPRINT

o
/ \ M
/ u_ \\\ 1. Select a random set of K clients
t
W(t/) / \\W(t) 2. Broadcast w(®
/ \
/ \

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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oI
/ \ 1
/, u_ \\\ 1. Select a random set of K clients
t
W(t/) / \\\W(w 2. Broadcast w(®
/ N 3. Perform E iterations of SGD

t
locally as W,E ) Wi —

nVL(w; b)

W g8 W
AN
w®

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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1. Select a random set of K clients

2. Broadcast w(®

3. Perform E iterations of SGD

t
locally as W,E ) Wi —

nVL(w; b)

4. Send W,Et) back to the server

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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1. Select a random set of K clients

2. Broadcast w(®

3. Perform E iterations of SGD

t
locally as W,E ) Wi —

nVL(w; b)

4. Send W,Et) back to the server

5. Aggregate updates as w(t+tD) «

K Tk (t)
k=17, Wk

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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Federated Averaging

1. Select a random set of K clients
2. Broadcast w(®

3. Perform E iterations of SGD
locally as W,E ) Wi —
nVL(w; b)

4. Send W,E ) back to the server

5, Aggregate updates as w{t+D)
S

6. Ifnot converged, go to 1.

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017
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FL and the Google Keyboard & )%SPR/NT

® A. Each client computes a step of
N ! stochastic gradient descent
locally on private data

C
\ = — — — —
~ @ el o B. The server collects the gradients

and performs an aggregated
update on the previous model

z |
f% ioﬁ | ——eij} C. The new modelis broadcasted

B. to the clients and the process
repeats

A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019
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W

Network Topology — Centralized, Clustered, Fully-decentralized

v

-
11

» Data Availability — Cross-silo, Cross-device
Federa.ted e
Learning ()

v

Data Partition — Horizontal, Vertical, Transfer Learning

X

Open-Source
Framework

v

— Tensorflow Federated, PySift, FATE

V. Mothukuri et al., “A survey on security and privacy of federated learning,”
Future Generation Computer Systems, vol. 115, pp. 619-640, Feb. 2021
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Network Topology & )%SPRINT

Centralized Federated
Learning

* Trusted third
party to monitor
and manage the
learning process

* All clients directly
communicate to
the central server

* Aggregation
occurs on the
server

V. Mothukuri et al., “A survey on security and privacy of federated learning,”
Future Generation Computer Systems, vol. 115, pp. 619-640, Feb. 2021
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Centralized Federated Clustered Federated
Learning Learning
e Trusted third * Trusted third F()jarty
: to monitor an
party to monitor manage the
and Manage the learning process
learning process . Clientg.are cIugtered
* All clients directly accoraing to tneir
: data distribution or
crc])mmunlclate to system constraints
the centr.a >ervel * Aggregation occurs
* Aggregation on the server, but
occurs on the follows the
server clustering

prescriptions

V. Mothukuri et al., “A survey on security and privacy of federated learning,”
Future Generation Computer Systems, vol. 115, pp. 619-640, Feb. 2021
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Centralized Federated
Learning

* Trusted third
party to monitor
and manage the
learning process

* All clients directly
communicate to
the central server

* Aggregation
occurs on the
server

Clustered Federated
Learning

* Trusted third party
to monitor and
manage the
learning process

e Clients are clustered
according to their
data distribution or
system constraints

* Aggregation occurs
on the server, but
follows the
clustering
prescriptions

A
oM

Fully-decentralized
Federated Learning

* Peer-to-peer
topology, no trusted
third party

e A trusted P2P
protocol substitutes
the role of the
central server

» Aggregation occurs
on the client

* Blochckain-based

update ledger

V. Mothukuri et al., “A survey on security and privacy of federated learning,”
Future Generation Computer Systems, vol. 115, pp. 619-640, Feb. 2021
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Data Availability @3%%344511

Distributed Machine
Learning

e Data storedin a
network of powerful
cloud machines

* Data can be shuffled
and balanced across
clients

* Any client has access
to any part of the
dataset

* Computation is the
bottleneck

. ?/plcally, 1-1000
ents

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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Data Availability XY SPRINT

Distributed Machine Cross-Silo Federated
Learning Learning
* Data stored in a * Data stored in edge
network of powerful devices with high
cloud machines computational power
* Data can be shuffled (institutions)
and balanced across * Data never leave the
clients client

* Data can be accessed
only by the owner and
data samples are never

* Any client has access
to any part of the

dataset Y explicitly shared
* Computation is the . Computation or
bot’FIeneck communication can be
. T?{p|cally, 1-1000 the bottleneck
clients * Typically, 2-100 clients

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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Data Availability XY SPRINT

Distributed Machine Cross-Silo Federated Cross-Device
Learning Learning Federated Learning

* Data st?(re]g ina o . gatz_a store_dhirr\].eﬂge * Data stored in edge devices
network ot powertu evices with hig . :
cloud machipnes computational power with low computational

« Data can be shuffled (institutions) power (end-users)
and balanced across . Dlatatnever leave the » Data never leave the client
clients Gicl .

%y client hasEeess « Data can be accessed Data can be accessed only
to any part of the only by the owner and by the owner and data
dataset dateln_ s_§[|r11plhes a(rje never samples are never explicitly

explicitly share

« Computation is the . CoF:n tyt' shared
bottleneck bl « Communication is the

, communication can be

. T?{plcally, 1-1000 the bottleneck bottleneck

clients * Typically, 2-100 clients « Up to 106 clients

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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Data Partition & 3%SPRINT

COMPUTING CONTINULM

Horizontal Federated
Learning

* Features overlap a lot
* Users overlap a little

* Example: same service
provider in different
regions

Data froim A

Samples
Horizontally
Federated Learning

D;;lta from B [0

Features

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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Horizontal Federated Vertical Federated
Learning Learning
* Features overlap a lot * Features overlap a little
* Users overlap a little e Users overlap a lot
* Example: same service * Example: two different
provider in different institutions, e.g., a
regions bank and a store in the
same region
Data froimA i £ __DatafromA_ ____________________
;i | :§§ i —E_ Vertically Federated Learning
g - £E 5
| ::E D?ta from B ae """--““““"55{2;%;(')1‘“'"5"]“3'1&13
Features Features

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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Horizontal Federated Vertical Federated Federated Transfer
Learning Learning Learning
* Features overlap a lot * Features overlap a little * Features overlap a little
* Users overlap a little e Users overlap a lot * Users overlap a little
* Example: same service * Example: two different e Example: two different
provider in different institutions, e.g., a institutions in different
regions bank and a store in the regions
same region
Data from A & _DatafromA_
- i :;; ! . B Data from A '
%_ ' é 3 ' —:_ Vertically Federated Learning 71
: o EE : g
v : = _:E D%ita from B Lebels s "________________Bzzt_zl_%lt(;r_n__]g_}ghels . Data from B [Labels
Features

Features Features

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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The general FL pipeline

Model
Selection

Local
Training

]

Aggregate
Updates

Fa
& )% SPRINT

« Model Selection (server)
Define and initialize a global ML
model, then send it to the clients
e Local Training (clients)

Train the global model on private
data, then send the updated model
back to the server

o Aggregate Updates (server)

Combine the local updates into a
single, new, global model, then
repeat the process

A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019
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IVACY-PRESERVING
UUUUUUU

Statistical and System Heterogeneity CA%SWEEINT

« X Can diverge in heterogeneous
settings

@ W(t+1)

oIEn

—— e Federated Averaging

$! « / Simple and easy to
| understand
|
w;" w®  / Works well in practice

|
|
|

=

0
.

Ng,\
N

V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020
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Statistical and System Heterogeneity C""? )%SPR/N_T

Al 1M SECURE PRIVACY-PRESERVING
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oI
e « Federated Averaging
$l « X Statistical heterogeneity
: i Shakespeare
[ ' FedAvg, E=1
wy?| jw® e
: 35
|
| o 3.0
i/ £
r_ . Kw
=a
E U 0 10 20 30 #Rgsnds 50 60 70 80
W

V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020
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Statistical and System Heterogeneity C""? )%SPR/N_T

Al 1M SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

oI
== « Federated Averaging
t « X System heterogeneity
I
I : :
| 3.0 stragglers
wy | 1w ,
I 0 2.5
| 3 20 |||l
v 2 | | |
. c 1.5 } f
2 é tli’!'%‘*!_ -;.{ ’ 1
l_ B l Lf *“l P 1'\ h"'"‘-J I“fj\%m‘ — N x.»'!’l
0.5 -

(0
- B

200 400 600 800

0
E U # Rounds
W(t)
2

V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020
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Statistical and System Heterogeneity & )%SPRINT

COMPUTING CONT

New local update: » Y . FedProx
: ~ _
min Fi (w) + 2 lw = w . / Statistical heterogeneity:
— —— encourage well-behaved updates
Original local ~ Regularization using a regularization term

objective  term to discourage

big changes « / System heterogeneity: allow

for incomplete updates after a
fixed AT

T. Li et al., “Federated Optimization in Heterogeneous Networks,” arXiv:1812.06127 [cs, stat], Apr. 2020
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Statistical and System Heterogeneity SYSSPRINT

Al 1M SECURE PRIVACY-PRESERVING

COMPUTING CONTINULM

New local update:

1 12 o FedProx
gl (W) M . / Statistical heterogeneity:

encourage well-behaved updates
using a regularization term

o / System heterogeneity: allow

for incomplete updates after a
fixed AT

« / Generalizes FedAvg (u = 0)

T. Li et al., “Federated Optimization in Heterogeneous Networks,” arXiv:1812.06127 [cs, stat], Apr. 2020
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Reduce the Communication Costs & )%SPRINT

e Quantization

&)
g Reduce the number of bits
EEER required for the update with
discretization

=1

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv.
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020
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Reduce the Communication Costs & )%SPRINT

COMPUTING CONTINULM

e Quantization

Reduce the number of bits
required for the update with
discretization

e Less Parameters

Select and design tiny ML models
to be trained in the federation

=1

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv.
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020
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Reduce the Communication Costs

e Quantization

Reduce the number of bits
required for the update with
discretization

e Less Parameters

Select and design tiny ML models
to be trained in the federation

e Importance-based Updating

Selectively send model weights
Sa using attention-based importance
metrics and dropout

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv.
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020
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Reduce the Communication Costs & )%SPRINT

flile

e Increase local computation

By increasing E, the learning
process involves less iterations;
this, however, may make
convergence harder

[ I
|

44— " —— — —

=

(L0
- B

C

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv.
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020
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COMPUTING CONTINUUM

Neural Architecture Search (NAS)

Matteo Matteucci, Politecnico di Milano

"
i

L2

Sat\
AN AT
A\ ,h__#' =n

AI-SPRINT project has received funding from the European Union Horizoon
2020 research and innovation pregramme under Grant Agreement No. 101016577.




Neural Architecture Search and AI-SPRINT

OpenFog RA

CLOUD Q Q Layer O
IAAS, IAAS:

OpenFog RA
EDGE SERVERS Layer 1
I0T- &
AI-ENABLED OpenFog RA
EDGE SENSORS Layer 2

SENSOR  SURVEILLANCE AI-ENABLED  CAMERA SMART  ECGWATCH
CAMERAS SENSOR DRONES FARMING
SENSORS
“Hidden Technical Debt in Machine (
Learning Systems”, Google. NIPS 2015 Data Machine \
N\ ([ | verification Resource
Management
Data
confi " collection ML Analysis Serving
ontiguration — Code Tools Infrastructure
Feature
/| extraction Process
. - Management
Tools \_ )
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Al MODELS

O

SECURITY
TOOLS

KUBERNETES ¢

ey

e = —-@ PRIVACY PRESERVING
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What is computer vision and why do we care? CCA%SPRINT

How many animals are i & ey Where are the animals in Which pixels belong to which
there in this image? ¢ this image? object?

CAT, DOG, DUCK

Multi-label image e : . :
= & Image classification Object Detection Image Segmentation
classification

Classify multiple objects Classify object Bounding Box Outline of the object

Source: https://www.advancinganalytics.co.uk/blog/2022/5/23/31h3lzdpy2jxtOuoz3erfk82npmz3i
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FINANGE

Auto-insurer Tokio Marine use computer vision system for examining damaged

N

?Ehiclﬂs. Sourgealsifanceiournal .com

. —

p— :
-. @

erfk82npmz3i



e

 HEALTHCARE

Machine Learning and (‘itﬁﬂpui&r Vision play an important part here in detecting

breast cancers well on time. Source: New York Times

st .J.a’ Source: https://www.advancinganalytics.co.uk/blog/2022/5/23/31h3lzdpy2jxtOuoz3erfk82npmz3i



Computer vision used to detect hard hats on workers

Source: https://www.advancinganalytics.co.uk/blog/2022/5/23/31h3lzdpy2jxtOuoz3erfk82npmz3i



Y

Amazon Go uses computer vision to detect when a customer taken an item from

the shelf and automatically calculates the prices. Source: Amazon.com

4

/5/23/31@y2jxt0uoz3erfk8&nz i




1 Tesla cars' h\gﬁpilni Enﬂbl&j;wm accelerate and brake
a nmﬂficu"‘f ithin its lane. Source: Teslo .e':"-.LITIDFJiFGf s

o |
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AGRICULTURE

RSIP vision uses computer vision to predict agricultural yield. Source:

rsipvision.com

ancinganalytics.co.uk/blog/2022/5/23/31h3lzdpy2jxtOuoz3erfk82npmz3i



ADVERTISING

Artificial Intelligence Poster, Oxtord Street London by M&C Saatchi created the
e first ever ﬂl‘ﬁfiﬂiﬂ"'}f in’re”igeni poster campaign in the world, which evolves unique

ads based on how peuple react to it.

Source: https



It all started with ImageNet! C WASPRINT

Al IN SECURE PRIVACY-PRESERVING
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1
t
1
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:r_.i =l Db Amal g0 a
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It all started with ImageNet!

Top-5 error

30%
25%
20%

15% -

10%

5% -

0%

28%

2010
NEC-UIU

2012
AlexNet

014
ZFNet Goog
VGGNet

Human

2015

2016 2017

ResNet GooglLeNet

-v4

27

192

192

128
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"
tiger

.
o

European fire salamander

N)SPRINT

Al IN SECURE PRIVACY-PRESERVING
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Inggerhea

seat belt

sliding door

wombat tiger European fire salamander] Afriican crocodile

|Norwegian elkhound tiger cat spotted salamander Gila monster
wild boar jaguar common newt loggerhead

wallaby lynx long-horned beetle mud turtle

koala leopard box turtle leatherback turtle

1 e ,.1"‘.'!' -_ i

television wallaby
seat belt television sliding door hare
ice |0||’f microwave Shl:lji wallahy
hotdog monitor window shade wood rabbit
burrito screen window screen Lakeland terrier
Band Aid car mirror four-poster kit fox
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It all started with ImageNet! C‘"‘? )%SPR/NT

80 -
75 -
i)
S 70 +
>
U
Top-5 error o
=]
W]
30% - 28% J 65
25%
Ty
20% g-
15% - =
° 60
10% -
5% -
0%
2010 2 2012 014 Human 2015 2016 2017 55 -
NEC-UIU CE | AlexNet | ZFNet Goog ResNet GooglLeNet
VGGNet -v4
50 -

A A X % 6 A9 ab cO g% el 4> gl
PL&@*B .,3\;\\\ A\ gs Y\i\eﬁ, 3 c,f& X2 AV A N (N
W o e

192 192 128

Canziani et al. (2017)
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It all started with ImageNet! C‘"‘? )%SPRiNT

Inception-v4

80 1 '
Inception-v3 o ResNet-152

Res Met-ED‘ r VGG-16 VGG-19
75 1 ResNet-101 5 '
. ResNet-34 ;
ﬂ ResNet-18 §
GaogLeNet :
EMet :

2 704
Top-5 error 3
30% - 28% =
25% d
20% g ﬁEI b
i
15% - E' o BN-NIN |
10% :
o = 60 SM.----35M- - 65M.-95M - 125M - 155M
0%
Nsé?b?u 2cE Alzemxﬁet Human Rig:lset Go:g:.gﬂet 2017 BN-AlexNet
veant = 55 AlexNet
6—3\3[& I 0 5 10 15 20 25 30 35 40
B E— Operations [G-Ops]
Canziani et al. (2017)
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Neural networks keep growing! @% SPRINT
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LeNet (1998)

2 convolutional layers

+ 2 fully connected layers

INPUT C1: feature maps C3: feature maps
37832 b@28x28 2: feature maps 16@10x10
6@14x14

S4: f. maps C5:layer Fg: layer OUTPUT
16@sxs 120 84 10

GAUSSIAN

‘ FULL CONNECTIONS
CONVOLUTIONS SUBSAMPLING CONVOLUTIONS SUBSAMPLING CONNECTION
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Neural networks keep growing Ccﬁ%SPRINT
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LeNet (1998) AlexNet (2012)

2 convolutional layers
2 fully connected layers

5 convolutional layers
3 fully connected layers

INPUT C1: feature maps C3: feature maps
32%32 6@28x28 $2; feature maps 16@10x10

S4: f. maps C5:layer Fg: jayer OUTPUT
B@14x14 10

16@5x5 120 g4

=

GAUSSIAN

FULL CONNECTIONS
SUBSAMPLING CONNECTION

5 L
Joe s ense ense|
s - 1000
24 128

2048 2048

CONVOLUTIONS SUBSAMPLING CONVOLUTIONS
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Neural networks keep growing CCA%SPRINT
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LeNet (1998)  AlexNet (2012)  VGGNet-M (2013)

224 x224x3 224x224x64

112 x|112 x 128

28x28x512 . TXTx512
e Taan 1x1x4096 1x1x 1000

@ convolution+ReLU

@ max pooling
fully connected+ReLU

{7 softmax
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Neural networks keep growing CCA%SPRINT
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LeNet (1998)  AlexNet (2012) VGGNet-M (2013) GooglLeNet (2014)

i
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Neural networks keep growing! C‘"‘? )%SPR/N_T
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! 1
! 1
! 1
! ]
: . | |
. |
. ! !
I
- , U ReLU E | 1x1con
! 1
152 layers : :
’ | |
A 7 I
! ‘ : 3 x 3 Conv i
Top-5 error \ . Bt :
30% 28% - .
20% ; e \
\
150/0 - . ) . \
° \ A ‘ 22 layers ‘ | 19 Iayer‘s ‘
5% 1 " W | o ey e
0% \ ‘ \
’ : 2016 2017 6.7

3 37 I_ I 8 layers 8 layers shallow

ILSVRC'1S5  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

£Y1

-
s
-

y

la

He et al. (2015) and Szegedy et al. (2017)
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Neural networks keep growing!

arXiv 2016

Inception-ResNet model
C. Szegedy etal.

GoogleNet -> Inception -> Inception_v4
Top-5: 3.1

ICLR 2015, CVPR 2015

VGG, GoogleNet
K. Simonyan; C. Szeqgedy

Classification top-5 error: 9.33, 9.15

NIPS 2012

AlexNet
A. Krizhevsky et al.

Milestone. Firsttime to apply
CNN in large-scale dataset (top-5: 15.3).

CVPR 2016

Residual Network
K Heetal

VGG -> PRelU (20 layers) -> ResN
Top-5: 4.49

2012 - 2014

Overfeat, Clarifi, Net-in-Ne
Variants of AlexNet

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning

COMPUTING CONTINULM

Softmax Output: 1000
Dropout (keep 0.8)  ouput 1530
Avarage Pooling  oupat 1538
1
3 x Inception-C Output: Extix1536 k
|
Reduction-B Output: 248x1535
7 x Inception-B Output: 17x17x1024
Reduction-A Output; 17x17x1024

!

4 x Inception-A

[

Stem

T

Input (299x299x3)

Output: 33384

Output Afw35e3A4

2002003

Inception-v4 network
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Filter concat
AN
_— P / N\ 3x1 Cony 1x3 Conv
1x1 Conv / \ (256) (256)
T / / T
1x32 Canv 3x1 Conv e
(256) (256) 3x1 Conv
1x1 Conv ) . 7 (5;2)
(256)
; \ . \/ 1x3 Conv
1x1 Conv (448)
: ™~ ‘ (384) ‘ 1
Avg Pocling 5 T )
— \ 1x1 Conv
— “ (384)
Filter concat

Zoom-in description of Inception-C block.

Compared with the original GoogleNet, it has more
convolution outputs with smaller filter size before feature
concatenation.




Neural networks keep growing! & )%SPRINT
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]
arXiv 2016 oo i
. oftmax -
Inception-ResNet model
C. Szegedy etal. ] Relu activation ‘
GoogleNet -> Inception -> Inception_v4 Dropout (keep 0.8) cupL R
Top-5: 3.1
) | ] / Activation scaling
CVPR 2016 Average Pocling Ouput 17E2
Residual Network 1 conv
K. Heetal. 1 (1124 Li?'lr;:r)
- Output AxHx1 /42 . ___
VGG -> PRelLU (20 layers) -> ResNet (2 8 xInception-resnet-C ' TH‘COW
! Top-5: 4.49 ‘[ (192)
Reduction-B Oulpul. BxEx1792 ‘
ICLR 2015, CVPR 2015 5 1x7 Conv
VGG, GoogleNet ox s
K. Simonyan; C. Szegedy Inception-resnet-B Oulpul. 17x17x896
R % 1x1 Conv
Classification top-5 error: 9.33, 9.15 | (128)
. Reduction-A Qutput: 17X17%896 —
2012 - 2014 | -
Overfeat, Clarifi, Net-in-Net, et Relu activation
Variants of AlexNet 5 x Inception-resnet-A o 36xsE2%s
3 1 Zoom-in description of Inception-resnet-B block.
NIPS 2012
Stem Oulpul. 3x35x256 .. .
AlexNet _ From empirical evidence:
A. Krizhevsky et al. | 1. Training with residual connections accelerates the
Milestone. First time to apply Input (299x299x3) 260299 training of Inception networks significantly;
CNN in large-scale dataset (top-5: 15.3). 2. Scaling down residuals before adding them to the
Inception—Resnet v2 subsequent layer’s activation stabilizes training.
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How good are humans in designing neural nets”? Ccn:%SPRIEI_—‘T

O ackfed mput cot Neural Networks
Deep Feed Forward Deep Convolutional Network Deconvolutional Network Deep Convolutional Inverse Graphics Network

A mostly complete chart of architectures

Input Cell = Pl ~
n >< >< /Ox /Ox
sy | 8 _
Noksy input Cell Feed ForwardAnd  Feed Forward Xor Radial Basis Network X X_ ol ol
) — — o) ol
Hidden Cell -~ ~
N . o8 e ! X0 0%
lethr i -~ g
P I H
. robablistic Hidden Cell >;< >_< O O
Spiking Hidden Cell
. piking At Recurrent Neural Network (bi) Long / Short Term Memaory (bi) Gated Recurrent Unit (bi)
Generative Adversarial Network Liquid State Machine Echo State Network Kohonen Network
. Qutput Cell
@ Match input Output Cell
. Recurrent Cell
. Memory Cell . -
Auto Encoder Variational Auto Encoder Denoising Auto Encoder  Sparse Auto Encoder

. Open Memory Cell

A Deep Residual Network Support Vector Machine Newral Turing Machine
Scanning Filter A
FAN

Markov Chain Hopfield Network Baoltzmann Machine Restricted Boltz. Ma. Deep Belief Netwaork

o ‘.‘@ {A}.{ Why do not automate the search for

‘R \‘ 2.7\

the optimal architecture?
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What is AutoML? SPR/NT

nl 1M SECURE PRIVACY-PRESERVING
WWWWWWWWWWWWW

Automated Machine Learning (AutoML), refers to the use of automated processes and
techniques to automate various stages of the machine learning pipeline

Traditional ML training
workflow AutoML

Define
problem

workflow

Define
problem

Collect data
Train model Preprocess
data

AutoML Collect data

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it - 70 -



What is AutoML? (ck%SPR/NT

The goal of AutoML is to simplify and accelerate the process of developing machine
learning models by reducing the manual effort from data scientists and Al/ML experts

R User inputs Iterations Training scores Leaderboard
EEE Data " ﬁ%‘ Features + Algorithm + Parameters mp  50% fank " Model " Score
1 95%
EE Target metric —» e Features + Algonthm + Parameters Wy 76% — 2 76%
: ) 3 3 & 53%
L &ﬁg‘iﬁ — Ve Features + Algonthm + Parameters W 53%
f{- 4 Features + Algonthm + Parameters mp 95%

o)

ﬁ&’.n Features + Algonthm + Parameters 43% '@'

*

v
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What is AutoML? CCA%SPR/NT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

The fundamental steps, especially for Computer Vision problems, is the design of the
model. In Deep Learning this is called Neural Architecture Search

/-~ N

Data Preparation Feature Engineering Model Generation Model Evaluation

Daia Feature Search Space Optimization Methods i . E

Collection Selection E Low-fidelity |

i, J :

Traditional Hyperparameter i :

Models Optimization E i ) E

(SVM, KNN) '| Early-stopping |:

Data Cleaning Featun:e HFeature ]——* . . E

Extraction i ( 1

i i T L | | | " | Surrogate Model E

: L v :

' Deep Neural Architecture :

' Networks Optimization i ¢

Data Feature E (CNN, RNN) P Weight-shari :

Augmentation Construction ' cigi-siamg I

:‘ Neural Architecture Search (NAS) ¢ 3
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COMPUTING CONTINUUM

Neural Architecture Search (NAS)

Matteo Matteucci, Politecnico di Milano
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Neural Architecture Search (NAS) is a technique within the field of machine learning that
automates the process of designing and discovering optimal neural network
architectures for a given task in the direction of automatic model design.

architecture
AcA
Search Space —— | Performance
> Search Strategy Estimation
A i Strategy
performance

estimate of A

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it - 74 -



NAS works can be described as a composition of three ingredients:

« The search space is the set of all possible architectures that can be found during the
search process

« The search strategy defines how the algorithm explores the search space to find
optimal architectures for the given task

« The performance evaluation strategy determines how to efficiently evaluate the
quality of the architectures during the search process

architecture
4 N ( N\ AcA ([ D
Search Space A+ | Performance
| Search Strategy Estimation
A i N Strategy
N o ~ < performance \ J

estimate of A
Elsken et al. (2019)
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“Vanilla” Neural Architecture Search

G5V SPRINT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

“Neural Architecture Search with Reinforcement Learning” represents the first milestone
in automating neural networks design.

NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph; Quoc V. Le
Google Brain

The goal was to search for the whole neural network
architecture for a given task

this RNN with reinforcement learning to maximize the expected accuracy of the

{barretzoph,gvl}@google.com
ABSTRACT
Neural networks are powerful and flexible models that work well for many diffi-
: H i i : cult learning tasks in image, speech and natural language understanding. Despite
. NUFlI'"IbEI' s Fi I_ter s FI_Iter s Stl’:lde s St.l"lde s NLIF.F'IbEI' s FI|_tEI" s their success, neural networks are still hard to design. In this paper, we use a re-
. of Filters|y, HEIght % Width [ HEIg ht |4 | Width |\ |of Filters|: HEIg ht | current network to generate the model descriptions of neural networks and train
L] L) L L] L] L] i 1
'. T '. T : T '. T '. T : T : T -.
] 1 ] L] 1 1 1 ]
L] L} L] L} L] L] i L]
v 1 ] ' v ] ] 1
' ' \ \ \ ' . '
— ] | ; :

generated architectures on a validation set. On the CIFAR-10 dataset, our method,
starting from scratch, can design a novel network architecture that rivals the best
human-invented architecture in terms of test set accuracy. Our CIFAR-10 model
achieves a test error rate of 3.65, which is (.09 percent better and 1.05x faster than
' III v 1: > v > r o Ill)' the previous state-of-the-art model that used a similar architectural scheme. On
\ . i i 1 i H ¥ the Penn Treebank dataset, our model can compose a novel recurrent cell that out-
. H ' ' H ' ' H performs the widely-used LSTM cell, and other state-of-the-art baselines. Our cell
' \ ' ' ' ' : . achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplex-
. ' ' ' v ' 1 d ity better than the previous state-of-the-art model. The cell can also be transferred
'g a '; '; '; '; "a ; to the character language modeling task on PTB and achieves a state-of-the-art
. 1 5 5 ' 5 \ . perplexity of 1.214.
L1 L 1 1 L] L] L] L]
‘n :4 “ ',4 .t :4 .t :4 ‘n ':4 .t ':4 .l ,4 ‘0 ‘14
A A o o A L L MF
Layer N-1 Layer N Layer N+1
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“Vanilla” Neural Architecture Search CCA%SPR/NT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

An RL-based controller proposing child model architectures for evaluation is included in
the initial design of the NAS

The controller is implemented as an RNN that outputs a sequence of tokens of variable
length, which are used for the configuration of a network architecture

Sample architecture A
with probability p

[ '

Trains a child network

The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller
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“Vanilla” Neural Architecture Search C‘ ,.:' )%SPR/N_T

| 1M SECURE PRIVACY-PRESERVING

The controller is trained as an RL task via REINFORCE:

Sample architecture A

« Action Space: The action space is a list of tokens [ EEE— !
for the definition of a child network that is
predicted by the controller. The controller The contraller (RNN) T architecture.
outputs an action, a1, where T is the total o
number of tokens in the action space. I J
« Reward: The reward for training the controller i rpeill o
is the accuracy of a child network that can be e conteter
achieved at convergence R. function REINFORCE
Initialise & arbitrarily
« Loss: NAS optimises the controller parameters w Wl et sl i S - ST, T o i
via REINFORCE loss. The goal is the maximization 0+ 8+ aVy logma(s.ai)v,
of the expected reward (high accuracy). end o "
returmn @

end function
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Al IN SECURE PRIVACY-PRESERVING
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“Vanilla” Neural Architecture Search CCA%SPR/NT

Number Filter Filter Stride Stride Number Filter

The controller samples convolutional Softmax . fofitersf; | Heiht |- | width [, | Heign [, | width [, o Fitersl, | Heioht [:
networks. It predicts filter height, O N O O A A O
width, stride height, stride width, Hidden State =8 I PLd Thel Ll Gbyd Elpd Pl 7

and number of filters per layer. Embedding — I s 15 T Tpm BRY i ) 1 L&
tE T e s s I Y
. ‘I_.ayer N-1 r s Layer N . Layer N+1

N-1 SKIp connections

Each prediction is made by a — A‘
softmax classifier. Its score is then

H H Number Anchor Filter Filter Stride Stride Anchor Number Filter
used as |nput fOr the nEXt t|me Step. ‘-.. ofFiItersL Point [\| Height [\ | Width [\ | Height |\ | Width “.. Point |\ lof Filters|\ | Height .
[ 3 ' 4 H \ 1 A ' 4 f A ' 4 H \ ' A
> '; > > > > > > >
TR ¥ Y N Y X LA R § : VA Y
Skip connections added by means of T T T s b s s
1 LA LA LA LA LA LA LA LA LA |
anchor p0|nts too AU A
Layer N-1 oo Layer N oo Layer N+1

Zoph and Le (2017)
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“Vanilla” Neural Architecture Search CCA%SPR/NT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

The achieved results were impressive, with performance able to compete with the best
human being designed architectures (the leaderboard is on CIFAR10 dataset)

Model | Depth  Parameters | Error rate (%)

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81

28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46

1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24

DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10

DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74

DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46

Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50

Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1IM 4.47 -+
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65 =

Best NAS Architecture on CIFAR-10

The cost involved the training of 12800 architectures from scratch until convergence,
using 22400 GPU-days, and thus making the process not practical nor scalable ®

Zoph and Le (2017)
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Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

Inspired by the use of repeating modules in successful architectures (e.g. Inception,
ResNet), the NASNet search space defines a convnet architecture by repeating several

times the same cell containing multiple operations predicted by the NAS algorithm
Input

Cell;,,

Cell;

reduction cell

.
i
- sep sep sep N :dent: avg avg sep sep
1denti 1denti
3Ix3 qu 3xd Exh 3Ix3 l}l Ix3 5x5 Ix3
L ] = [ 3 * ]
: 1 \ i ! H i
reduction cell \ i ] ] / :
’
i % I i F] S
L Y L "
v . li' ’r 7 s
'ulII _rr .r’ ’RJ '_f‘*
‘\‘ EEIIJ -1 ll J‘, ’f l’.’.I’ ”f
"\ P g s - -
H““‘- i“.r;-l- 'l:;:'::-:"#'
Output == Cell;_, p=====

Zoph et al. (2018)
AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning
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Softmax

The NASNet search space learns two types of cells for mT y
network construction: %
SoftTmax e uc‘|:n e
« Normal Cell: The input and output feature maps have S S
the same dimension (like with convolutional layers).
. o . A A
« Reduction Cell: The output feature map has its width
and height reduced by half (like with pooling layers). — —
e uc;:n e e UC‘Ii)n e X

Well-designed cell modules provide portability across vomarcan | 1
datasets and easy scalability of model size by adjusting 1
the number of cell repeats.

Image Image

CIFAR10 ImageNet
Architecture Architecture

Zoph et al. (2018)
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Predictors for each cell are made by B blocks (B =5 in NASNet paper), where each block
contains five predictive steps made by five different softmax classifiers corresponding to

discrete selections of elements of a block.

Output: new hidden state " New hidden layer C |

CStep 5: elem-wise add or concat) C elem-wise add )

/\

Step 3: Select op to Step 4: Select op to _ _

apply to hidden state i apply to hidden state j 3x3 conv identity
S  EEla—— 5 . I . I
. Select hidden statei | ! Select hidden state ] " Hidden layer A ! " Hidden layer B E

. from previous states : ‘

+ from previous states

(a) 5 discrete choices in each block (b) A concrete example
Zoph et al. (2018)
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The major advantages of the NASNet search space can be summarized as:

« The size of the search space is drastically reduced

The cell-based architecture can be more easily applied to different datasets

It provides strong evidence for a useful design pattern of repeated stacking of

modules in architecture engineering (e.g., residual blocks in CNNs, multi-headed
attention blocks in Transformers, etc.)

Search Search Search Search Cost CIFAR10 ImageNet

Method Space Strategy (GPU-days) Error Error (mobile)

NAS Global REINFORCE 22400 3.65 -
Zoph and Le (2017)

NASNet Cell-based PPO 2000 3.41 26.0
Zoph et al. (2018)

Zoph et al. (2018)
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Progressive NAS (PNAS) Ccﬁf;%SPR/NT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

Progressive NAS (PNAS) frames the NAS problem as a progressive search for increasingly
complex models via Sequential Model-based Bayesian Optimization (SMBO) as its
search strategy instead of RL

Softmax
H* T
L | Cell, stride 1 | xN
Softmax Cell, stride 2
Cell, stride 1 XN Cell, stride 1 XN
Cell, stride 2 Cell, stride 2
= Cell, stride 1 XN Cell, stride 1 XN
sSep max sep Sep iden sep sep max
7x7 X3 55 33 tity 3x3 5x5 3x3 t t
\\‘:‘__X\ _/ Cell, stride 2 Cell, stride2 | x2
Hc—'l T f
1 Cell, stride 1 | xN 3x3 conv, stride 2
:I Image Image
1
He2 CIFAR-10 ImageNet
Architecture Architecture

Liu et al. (2018)
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Progressive NAS (PNAS) (ciﬂ:' )%SPR/NT

O candidates that get trained fO\
~

PNAS makes use of the same search space of NASNet O cndessscoroatymedcer s

« Each block is specified as a tuple of 5 elements, with PNAS - = [O " O]
considering only element-wise addition as the step 5 K1)

o Instead of setting the number of blocks B to a fixed number, .rT--"(_:_i:_"?;_f\;"_]
PNAS starts with B = 1, a model with only one block in a cel — \_/KT;;;)\y —
and gradually increases B [d) (5]

e The performance on a validation set is used as feedback for D R R e

- . e predictor L7 K(~10%) N
the training of a surrogate model for the prediction of the N
performance of novel architectures. This predictor can then [_':_’\j;'_}f‘f_:;_i P
be used to prioritise which models to evaluate next \/B *BL(*TOS\/

« The predictor is implemented with RNN model to handle [é (5]
different input sizes, accuracy, and sampling efficiency e

Liu et al. (2018)
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. o) |
Neural Architecture Search Benchmark CCA)%SPRINT

Search Search Search Search Cost CIFAR10 ImageNet
Method Space Strategy (GPU-days) Error Error (mobile)
NAS Global REINFORCE 22400 3.65 -

Zoph and Le (2017)

NASNet Cell-based PPO 2000 3.41 26.0

Zoph et al. (2018)

PNAS Cell-based SMBO 225 3.41 25.8

Liu et al. (2018)
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Pareto-Optimal Progressive NAS (POPNAS) extends PNAS
realising a multi-objective search between accuracy and
training time of the researched architectures such that
Pareto optimality is satisfied

POPNAS is based on two predictors:
e One predictor for accuracy (LSTM with Self-Attention)
e One predictor for training time (Catboost)

POPNAS can can adapt to both image and time series
classification problems

—

accuracy predictor

) SPRINT

Pareto-Optimal Progressive NAS C"‘: WA

IINSEC QE PF-: C PF?EEER MG

Initial thrust
(b=0)

time predictor

Training
(b=1)

Prediction

Pareto front
generation

vy

accuracy predictor

time predictor

Training
b=2)

Prediction

Pareto front
generation

Training
(b=3)

Best model

Falanti et al. (2023)

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning

Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it - 88 -



Pareto-Optimal Progressive NAS CCA%SPR/NT

O Initial thrust
(b=0)

Pareto-Optimal Progressive NAS (POPNAS) extends PNAS p I .
realising a multi-objective search between accuracy and '///—W@
training time of the researched architectures such that IR \b é )
Pareto optimality is satisfied L

O O Pareto front
\ / generation
ion

0,90 - fﬁﬁihﬁ "-ﬂm" Up to K select
""*u i | ’ i | o - .90 Explore underused
; - i inputs and operators  _.----"=-=_
- | ¥ .. T
0851 # '-U'{/- 0.85 & / : LA \ Training
f'u e I : O O ! p (b=2)
- 0.80 5 L P
3 P
Eu.su- ; r'i' | 575, 8 S
accuracy predictor
E : :.F - 0.70 + J O/ 6 6 é J Prediction
0,75 1 H time predictor L
: : 0.65
I
0.70 | :‘ 800 - Pareto front
. i areto mron
Jlr ) 700 \ {O O } _/ generation
600 i
0.65 1 500 Up to K selection
10 400 time
20 o
200 300 00 500 600 700 30 40 i m e
Lirre rank 5_0 200 =3)
(a) Pareto front computed from predictions (b) Predicted Pareto front vs real results O Best model

Falanti et al. (2023)
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Neural Architecture Search (NAS)
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One-Shot NAS: Search + Evaluation & )%SPR/NT

Since search and evaluation independently for a large population of child models is
expensive, one-shot architecture search extends the idea of weight sharing:

« Combine learning of architecture generation with learning of weight parameters

« Treat child architectures as different subgraphs of a supergraph with shared weights
between common edges in the supergraph

Once the one-shot model is trained, it is e ) Tt Neural Architectures
evice
used to evaluate the performance of many | s % Deploy senchmar R . seeoste o ..
different architectures that are randomly Ye? l =l =
4 . . Traini Sampling

sampled by zeroing / removing operations. ooy e Neurer net ,_L

. . " § =4 | Distribution
This sampling process can be replaced !
by Reinforcement Learning or Evolutionary

dataset -
o — |Probab|I|ty
perators
g

Liu et al. (2019)

Algorithms

AI-SPRINT — Federated Learning for Privacy Preserving Machine Learning Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it - 91 -



Differentiable Architecture Search

Differentiable Architecture Search (DARTS) allows architecture parameters and weights
to be jointly trained via gradient descent by introducing a continuous relaxation and
softmax operators on each path in the search super-graph

Target

Neural Architectures
/O

Search space

[y
o0 @@ 00 0
‘a0 OO0 0 o

Training Sampling
super net

@: o "P—' Distribution
: roxy

dataset

° o
o o

Liu et al. (2019)
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A cell is a directed acyclic graph (DAG) consisting of a topologically ordered sequence of
N nodes. Each node has a latent representation x; to be learned. Each edge (i,j)is
associated with an operation 0% € O that transforms X;j to form x; :

X; = z o)) (x})

j<i

DARTS relaxes the categorical choice of a particular operation as a softmax over all
operations; architecture search is reduced to learning mixing probabilities a = {a("f)}

exp(ag’j)

!
520 Lo'c0 XP (@)

a(i:j) (x) =

o(x)

with a;; a |O] vector containing weights between nodes i and j over all operations

Liu et al. (2019)
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A bilevel optimization arises because we want to optimize both the network weights w
and the architecture representation « :

min Lyq; (W* (a)» a)
a
s.t. w*(a) = argmin L;,4in (W, @)
w

At step k, given the current architecture parameters a_1, we first optimise the weights
wj, by moving wy,_4 in the direction of minimizing, with a learning rate 4, training loss

mui,n Lirain (Wk—l: ak—l)

Next, keeping the newly updated weights wj, we update mixing probabilities to minimize
the validation loss after a single step of gradient descent with respect to the weights:

Ja = Lyal (Wk — )‘VWLtrain (Wk: ak—l): ak)
Liu et al. (2019)
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Differentiable Architecture Search Ccf:)%mSPR/NT

Al 1M SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

DARTS finds an architecture with a low validation loss when its weights are optimized by
gradient descent and one-step unrolled weights serve as a surrogate for w*(«a)

0 0 0 0
TN
y oo
I ? 1 1 1
2 2 / \
N \/
. . N : i i / . | r
? 2 | 2 2 2
L WP I __/
3 EN "_L‘]z B | 3
(@) Initially unknown (b) Continuous relaxation (c) Bilevel optimization to (d) Finalized the model
operations on the edges. by placing a mixture of jointly train mixing based on the learned
operations on each edge. probabilities and weights. mixing probabilities.

Liu et al. (2019)
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Neural Architecture Search Benchmark

Search

Search Cost

CIFAR10

ImageNet

Search Search
Method Space
NAS Global
Zoph and Le (2017)

NASNet Cell-based
Zoph et al. (2018)

PNAS Cell-based
Liu et al. (2018)

DARTS Super-

Liu et al. (2018) network

Strategy
REINFORCE

PPO

SMBO

Weight Sharing
+SGD

(GPU-days)
22400

2000

225

4

Error
3.65

3.41

3.41

3.00

Error (mobile)

26.0

25.8

26.9
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Once-for-All @;%gggggj_f

COMPUTING CONTINULM

Once-for-All (OFA) builds on the ideas presented in DARTS, but aims to address the
challenge of efficiently deploying neural network architectures on different hardware
platforms with different computational requirements

train a once-for-all network

‘ M Previous: O(N}‘design cost o OFA + MobileNetV3
'l Ours: O(1) design cost 77
76.1
— T - - oe.., // . &-o
——— — o o 00
~ 3 & 75 \00@#‘!‘ 0© ' o
O 8 "‘.a e‘ .o' " -” 75'2
ACI&"ZB l ub- nets\ S < o2 *‘T‘S‘B
2 16x~1300x & 73 ¢
| Qo reduction o 6 . o
o o o— 2 71 o o
> 1—% e Froa— & &
0 20 40 60 80 G .o K o G&*
o] ’ \!
direct deploy {, (no retrain) Number of Deployment Scenarios 2 "5 R
: | J ..“..E -D + 74
b cpu E ) _@ ulu|E @B 67
E a: . E ..... llllA 6 9 12 15 18 21 24
o 5 Cloud Al Mobile Al Different Hardware / Constraint Samsung Note10 Latency (ms)

Cai et al. (2020)
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Once-For-All & ﬁ)%SPR/NT

COMPUTING CONTINULM

The key contribution of OFA is architecture decoupling; instead of optimizing both
architecture & weights simultaneously, as in DARTS, OFA separates the process in two:

« OFA trains a single large neural network, referred to as the super-network,
encompassing all possible sub-networks

« OFA derives specialized sub-networks from it by selecting appropriate paths based on
specific hardware constraints or resource budgets.

train a once-for-all network

. Previous: O(N) dESign cost © OFA + MobileNetV3
1 B Ours: O(1) design cost 77
JE— 761
el ,‘__ —_ Ge’ — od’
= 3 E\S 0“ 00 © -t
8 8 [ .‘{b\ ekée- o;o - - 75.2
‘Aemahze sub- nets\ = < Gp- ° i ?3 2 t
2 16x~1300x & 73 ¢
= reduction g o »’ &
5 o ? Mo m f' 7
o— £ 71 1700° ¥ ’\*‘0
> _ S 704 —— & O
0O 20 40 60 80 G g K NN
Number of Deployment Scenanos L ¢ ) @0
direct deploy {no retrain) ,’674

ili : — P *
Em A 5 TmyAlmD e 9 12 15 18 21 o2a
ou

Mobile Al “mmm (AloT)  Different Hardware / Constralnt Samsung Note10 Latency (ms)

Cai et al. (2020)
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Once-For-All XY SPRINT

OFA uses the Progressive Shrinking (PS) optimization strategy; this strategy not only
enables the acquisition of excellent starting points for sub-network extraction but also
concentrates the computational load into a single end-to-end training process

The algorithm begins by defining the maximal network, which includes all PS parameters
set to their maximum values. Subsequently, the PS training steps and phases are
executed sequentially

The PS algorithm is organized into four elastic steps, each comprising multiple phases.

Progressive Shrinking
[ Train the J Ehrink the model Pl once-for-all
_—

full model (4 dimensions) E;tgnlas:]g:_ r?;: network

\\/

Cai et al. (2020)
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Once-For-All XY SPRINT

The first step, Elastic Resolution, involves randomly varying the size of input images

The second step, Elastic Kernel Size, gradually reduces the maximum kernel size for
convolutional operators across the entire network

5x5
% 3x3

Transform Transform
Matrix Matrix
25x25 9x9

X7

Cai et al. (2020)
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Once-For-All @;%gggm

The third step, Elastic Depth, progressively decreases the minimum depth achievable for
sub-networks

O1
02

03
train with full depth  shrink the depth shnnk the depth

Finally, the fourth step, Elastic Width, aims to reduce the number of filters available for
each convolutional layer

channel channel
importance importance

e e 0.82 = [ onnel
= . channel} ) 49 =28 T sorting”

. > sorting Oa
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train with full width progressively shrink the width progressively shrink the width

Cai et al. (2020)
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ERYSPRINT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

It is possible to sample sub-networks to extract their configuration encoding, and train
surrogate models to enhance EA effectiveness in identifying the most suitable and
performing sub-network according to different hardware constraints
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Neural Architecture Search Benchmark CCAJ%SPRINT

Search Search Cost CIFAR10 ImageNet
Strategy (GPU-days) Error Error (mobile)
NAS Global REINFORCE 22400 3.65 -
Zoph and Le (2017)
NASNet Cell-based PPO 2000 3.41 26.0
Zoph et al. (2018)
PNAS Cell-based SMBO 225 3.41 25.8
Liu et al. (2018)
DARTS Super- Weight Sharing 4 3.00 26.9
Liu et al. (2018) network +SGD
OFA Super- Weight Sharing (50 +) 1.67 - 20.0
Cai et al. (2020) network + EA
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Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

Neural Architecture Transfer CCA%SPR/NT

Neural Architecture Transfer (NAT) builds on OFA framework as an adaptive post-
processing replacement of the original sub-network extraction. NAT progressively
transforms a pre-trained generic super-network into a task-specific super-network
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Neural Architecture Transfer CCA%SPR/NT

Al IN SECURE PRIVACY-PRESERVING
COMPUTING CONTINULM

To speed-up the super-network adaptation process, NAT selectively fine-tunes only
those parts of the super-network that correspond to sub-networks whose structures can
be directly sampled from the current trade-off front distribution.

NAT's multi-objective evolutionary search is guided and accelerated by a performance
prediction model updated online with only the best sub-network configurations
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Neural Architecture Search Benchmark WSPRINT

Search Search Search Cost CIFAR10 ImageNet
Method Strategy (GPU-days) Error Error (mobile)
NAS Global REINFORCE 22400 3.65 -

Zoph and Le (2017)

NASNet Cell-based PPO 2000 3.41 26.0

Zoph et al. (2018)

PNAS Cell-based SMBO 225 3.41 25.8

Liu et al. (2018)

DARTS Super- Weight Sharing 4 3.00 26.9

Liu et al. (2018) network +SGD

OFA Super- Weight Sharing (50 +) 1.67 - 20.0

Cai et al. (2020) network + EA

NAT Super- Weight Sharing (50 +) 6.25 1.60 19.5

Lu et al. (2021) network + EA
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COMPUTING CONTINUUM

Neural Architecture Search (NAS)

Matteo Matteucci, Politecnico di Milano
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