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Federated Learning and AI-SPRINT

“Hidden Technical Debt in Machine
Learning Systems”, Google. NIPS 2015
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Where Does AI Happens?

3

• Data is born at the edge

• Pros of processing directly at 
the edge:

• Low latency

• Communication

• Energy efficiency

• Privacy

• Compliance to GDPR and 
privacy regulation laws

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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4

Modern models are trained
offline on the cloud and 
deployed on the field for 
inference on new data
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The Edge Intelligence Paradigm
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Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019
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9

Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019

Edge-based Device-based Edge-Device Edge-Cloud
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Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019
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Adantages of Training on the Edge
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Privacy & Information Security Reduced Time & Latency

Scalability Cost Effectiveness

Source: Google Cloud Solutions

Autonomous Car 

• Generates 3TB of data per hour

• At maximum 5G speed of 1Gbps 

• 9+ hours to send information 

from the car to the server.

Source: NVIDIA https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/

Fleet of 100 Autonomous Cars 

• Each generates 1+TB of data per hour

• Data reduction = ~0.0005 of raw data

• Data after preprocessing = 104 TB/y

• NVIDIA DGX-1 8GPU = ~1 year

Source: NVIDIA https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/
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Model Training on the Edge
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Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Zhi Zhou, et al., Proceedings of IEEE. 2019

Centralized Hybrid Distributed
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Why is this a Big Concern?

Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it  - 13 -

• “The enormous data that companies feed into AI-
driven algorithms are susceptible to data breaches 
as well.“

• “AI may generate personal data […] created without 
the permission of the individual.”

The Social Impact of Artificial Intelligence and Data Privacy Issues
by Shree Das, 08 September 2020
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Are you entitled to use those data?
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Federated Learning (FL)
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“Federated learning is a machine learning setting where multiple entities (clients) 
collaborate in solving a machine learning problem, under the coordination of a 
central server or service provider. 

Each client’s raw data is stored locally and not exchanged or transferred; instead, 
focused updates intended for immediate aggregation are used to achieve the 
learning objective.”

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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A new paradigm
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• FL is fundamentally different from 
distributed machine learning, 
where:
• Data are stored in a network 

of powerful cloud machines
• Data can be shuffled and 

balanced across clients
• Any client has access to any 

part of the dataset
• Computation is the bottleneck
• Typically, 1-1000 clients

A. Willing, “Asynchronous distributed deep learning technology,” eenewseurope.com, Aug. 2020
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The general FL pipeline
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• Model Selection (server)
Define and initialize a global ML 
model, then send it to the clients

• Local Training (clients)
Train the global model on private 
data, then send the updated model 
back to the server

• Aggregate Updates (server)
Combine the local updates into a 
single, new, global model, then 
repeat the process

A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019

Aggregate 
Updates

Model 
Selection

Local 
Training
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Federated Averaging
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1. Select a random set of 𝐾 clients

…
1

2

𝐾

𝑤 𝑡

H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017



AI-SPRINT – Federated Learning for Privacy Preserving Machine Learning

Federated Averaging
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H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017

1. Select a random set of 𝐾 clients

2. Broadcast 𝑤 𝑡
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Federated Averaging
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H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017

1. Select a random set of 𝐾 clients

2. Broadcast 𝑤 𝑡

3. Perform 𝐸 iterations of SGD 

locally as 𝑤𝑘
𝑡
← 𝑤𝑘 −

𝜂∇ℒ 𝑤; 𝑏
…
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H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017

1. Select a random set of 𝐾 clients

2. Broadcast 𝑤 𝑡

3. Perform 𝐸 iterations of SGD 

locally as 𝑤𝑘
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Federated Averaging
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H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” arXiv:1602.05629 [cs], Feb. 2017

1. Select a random set of 𝐾 clients

2. Broadcast 𝑤 𝑡

3. Perform 𝐸 iterations of SGD 
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FL and the Google Keyboard
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A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019

A. Each client computes a step of 
stochastic gradient descent 
locally on private data

B. The server collects the gradients 
and performs an aggregated 
update on the previous model

C. The new model is broadcasted 
to the clients and the process 
repeats
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Federated Learning Dimensions
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Federated 
Learning

Data Partition

Data Availability

Open-Source 
Framework

Network Topology Centralized, Clustered, Fully-decentralized

Cross-silo, Cross-device

Horizontal, Vertical, Transfer Learning

Tensorflow Federated, PySift, FATE

V. Mothukuri et al., “A survey on security and privacy of federated learning,” 
Future Generation Computer Systems, vol. 115, pp. 619–640, Feb. 2021
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Network Topology
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V. Mothukuri et al., “A survey on security and privacy of federated learning,” 
Future Generation Computer Systems, vol. 115, pp. 619–640, Feb. 2021

Centralized Federated 
Learning

• Trusted third 
party to monitor 
and manage the 
learning process

• All clients directly 
communicate to 
the central server

• Aggregation 
occurs on the 
server
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Network Topology
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V. Mothukuri et al., “A survey on security and privacy of federated learning,” 
Future Generation Computer Systems, vol. 115, pp. 619–640, Feb. 2021

Centralized Federated 
Learning

• Trusted third 
party to monitor 
and manage the 
learning process

• All clients directly 
communicate to 
the central server

• Aggregation 
occurs on the 
server

Clustered Federated 
Learning

• Trusted third party 
to monitor and 
manage the 
learning process

• Clients are clustered 
according to their 
data distribution or 
system constraints

• Aggregation occurs 
on the server, but 
follows the 
clustering 
prescriptions
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Network Topology
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V. Mothukuri et al., “A survey on security and privacy of federated learning,” 
Future Generation Computer Systems, vol. 115, pp. 619–640, Feb. 2021

Centralized Federated 
Learning

• Trusted third 
party to monitor 
and manage the 
learning process

• All clients directly 
communicate to 
the central server

• Aggregation 
occurs on the 
server

Clustered Federated 
Learning

• Trusted third party 
to monitor and 
manage the 
learning process

• Clients are clustered 
according to their 
data distribution or 
system constraints

• Aggregation occurs 
on the server, but 
follows the 
clustering 
prescriptions

Fully-decentralized 
Federated Learning

• Peer-to-peer 
topology, no trusted 
third party

• A trusted P2P 
protocol substitutes 
the role of the 
central server

• Aggregation occurs 
on the client

• Blochckain-based 
update ledger
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Data Availability
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Distributed Machine 
Learning

• Data stored in a 
network of powerful 
cloud machines

• Data can be shuffled 
and balanced across 
clients

• Any client has access 
to any part of the 
dataset

• Computation is the 
bottleneck

• Typically, 1-1000 
clients

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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Distributed Machine 
Learning

• Data stored in a 
network of powerful 
cloud machines

• Data can be shuffled 
and balanced across 
clients

• Any client has access 
to any part of the 
dataset

• Computation is the 
bottleneck

• Typically, 1-1000 
clients

Cross-Silo Federated
Learning
• Data stored in edge 

devices with high 
computational power 
(institutions)

• Data never leave the 
client

• Data can be accessed 
only by the owner and 
data samples are never 
explicitly shared

• Computation or 
communication can be 
the bottleneck

• Typically, 2-100 clients

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021
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Data Availability
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Distributed Machine 
Learning

• Data stored in a 
network of powerful 
cloud machines

• Data can be shuffled 
and balanced across 
clients

• Any client has access 
to any part of the 
dataset

• Computation is the 
bottleneck

• Typically, 1-1000 
clients

Cross-Silo Federated
Learning
• Data stored in edge 

devices with high 
computational power 
(institutions)

• Data never leave the 
client

• Data can be accessed 
only by the owner and 
data samples are never 
explicitly shared

• Computation or 
communication can be 
the bottleneck

• Typically, 2-100 clients

P. Kairouz et al., “Advances and Open Problems in Federated Learning,” arXiv:1912.04977 [cs, stat], Mar. 2021

Cross-Device
Federated Learning

• Data stored in edge devices 
with low computational 
power (end-users)

• Data never leave the client

• Data can be accessed only 
by the owner and data 
samples are never explicitly 
shared

• Communication is the 
bottleneck

• Up to 106 clients
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Data Partition
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Horizontal Federated 
Learning

• Features overlap a lot

• Users overlap a little

• Example: same service 
provider in different 
regions

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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Data Partition
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Horizontal Federated 
Learning

• Features overlap a lot

• Users overlap a little

• Example: same service 
provider in different 
regions

Vertical Federated 
Learning

• Features overlap a little

• Users overlap a lot

• Example: two different 
institutions, e.g., a 
bank and a store in the 
same region

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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Data Partition
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Horizontal Federated 
Learning

• Features overlap a lot

• Users overlap a little

• Example: same service 
provider in different 
regions

Vertical Federated 
Learning

• Features overlap a little

• Users overlap a lot

• Example: two different 
institutions, e.g., a 
bank and a store in the 
same region

Federated Transfer 
Learning

• Features overlap a little

•Users overlap a little

•Example: two different 
institutions in different 
regions

C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021
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The general FL pipeline
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• Model Selection (server)
Define and initialize a global ML 
model, then send it to the clients

• Local Training (clients)
Train the global model on private 
data, then send the updated model 
back to the server

• Aggregate Updates (server)
Combine the local updates into a 
single, new, global model, then 
repeat the process

A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” arXiv:1811.03604 [cs], Feb. 2019

Aggregate 
Updates

Model 
Selection

Local 
Training
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• Federated Averaging

• ✓ Simple and easy to 
understand

• ✓Works well in practice

• ✗ Can diverge in heterogeneous 
settings

Statistical and System Heterogeneity
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V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020
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Statistical and System Heterogeneity
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• Federated Averaging

• ✗ Statistical heterogeneity

V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020



AI-SPRINT – Federated Learning for Privacy Preserving Machine Learning

Statistical and System Heterogeneity
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V. Smith, “On Heterogeneity in Federated Settings,” Ep. 3 of Stanford MLSys Seminar Series, Oct. 2020

• Federated Averaging

• ✗ System heterogeneity
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Statistical and System Heterogeneity
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• FedProx

• ✓ Statistical heterogeneity: 
encourage well-behaved updates 
using a regularization term

• ✓ System heterogeneity: allow 
for incomplete updates after a 
fixed ∆𝑇

New local update:

min
𝑤

𝐹𝑘 𝑤 +
𝜇

2
𝑤 − 𝑤 𝑡 2

Original local 
objective 

Regularization 
term to discourage 

big changes

T. Li et al., “Federated Optimization in Heterogeneous Networks,” arXiv:1812.06127 [cs, stat], Apr. 2020
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Statistical and System Heterogeneity
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T. Li et al., “Federated Optimization in Heterogeneous Networks,” arXiv:1812.06127 [cs, stat], Apr. 2020

• FedProx

• ✓ Statistical heterogeneity: 
encourage well-behaved updates 
using a regularization term

• ✓ System heterogeneity: allow 
for incomplete updates after a 
fixed ∆𝑇

• ✓ Generalizes FedAvg (𝜇 = 0)

New local update:

min
𝑤

𝐹𝑘 𝑤 +
𝜇

2
𝑤 − 𝑤 𝑡 2
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Reduce the Communication Costs
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• Quantization

Reduce the number of bits 
required for the update with 
discretization

|𝑤1| |𝑤𝐾|

…

|𝑤2|

|𝑤|

|𝑤|

|𝑤|

1

2

𝐾

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv. 
Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020
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Reduce the Communication Costs
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• Quantization

Reduce the number of bits 
required for the update with 
discretization

• Less Parameters

Select and design tiny ML models 
to be trained in the federation

|𝑤1| |𝑤𝐾|

…

|𝑤2|

|𝑤|

|𝑤|

|𝑤|

1

2

𝐾

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv. 
Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020
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Reduce the Communication Costs
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• Quantization

Reduce the number of bits 
required for the update with 
discretization

• Less Parameters

Select and design tiny ML models 
to be trained in the federation

• Importance-based Updating

Selectively send model weights 
using attention-based importance 
metrics and dropout

|𝑤1| |𝑤𝐾|

…

|𝑤2|

|𝑤|

|𝑤|

|𝑤|

1

2

𝐾

W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Commun. Surv. 
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Reduce the Communication Costs
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• Increase local computation

By increasing 𝐸, the learning 
process involves less iterations; 
this, however, may make 
convergence harder

…
1

2

𝐾

𝐸

𝐸

𝐸
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Neural Architecture Search and AI-SPRINT

“Hidden Technical Debt in Machine
Learning Systems”, Google. NIPS 2015
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What is computer vision and why do we care?

Source: https://www.advancinganalytics.co.uk/blog/2022/5/23/31h3lzdpy2jxt0uoz3erfk82npmz3i
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It all started with ImageNet!
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It all started with ImageNet!
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It all started with ImageNet!

Canziani et al. (2017)

Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it  - 59 -



AI-SPRINT – Federated Learning for Privacy Preserving Machine Learning

It all started with ImageNet!

Canziani et al. (2017)
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Neural networks keep growing!
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Neural networks keep growing!
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Neural networks keep growing!

He et al. (2015) and Szegedy et al. (2017)
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Neural networks keep growing!
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How good are humans in designing neural nets?

Why do not automate the search for 
the optimal architecture?
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Automated Machine Learning (AutoML), refers to the use of automated processes and 
techniques to automate various stages of the machine learning pipeline

What is AutoML?
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The goal of AutoML is to simplify and accelerate the process of developing machine 
learning models by reducing the manual effort from data scientists and AI/ML experts

What is AutoML?
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The fundamental steps, especially for Computer Vision problems, is the design of the 
model. In Deep Learning this is called Neural Architecture Search

What is AutoML?
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Neural Architecture Search (NAS) is a technique within the field of machine learning that
automates the process of designing and discovering optimal neural network
architectures for a given task in the direction of automatic model design.

Neural Architecture Search
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NAS works can be described as a composition of three ingredients:

• The search space is the set of all possible architectures that can be found during the 
search process

• The search strategy defines how the algorithm explores the search space to find 
optimal architectures for the given task

• The performance evaluation strategy determines how to efficiently evaluate the 
quality of the architectures during the search process

Neural Architecture Search

Elsken et al. (2019)
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“Neural Architecture Search with Reinforcement Learning” represents the first milestone 
in automating neural networks design. 

The goal was to search for the whole neural network
architecture for a given task

“Vanilla” Neural Architecture Search

Zoph and Le (2017)
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An RL-based controller proposing child model architectures for evaluation is included in 
the initial design of the NAS

The controller is implemented as an RNN that outputs a sequence of tokens of variable 
length, which are used for the configuration of a network architecture

“Vanilla” Neural Architecture Search
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The controller is trained as an RL task via REINFORCE:

• Action Space: The action space is a list of tokens 
for the definition of a child network that is 
predicted by the controller. The controller
outputs an action, a1:T, where T is the total
number of tokens in the action space. 

• Reward: The reward for training the controller
is the accuracy of a child network that can be 
achieved at convergence R.

• Loss: NAS optimises the controller parameters w 
via REINFORCE loss. The goal is the maximization
of the expected reward (high accuracy).

“Vanilla” Neural Architecture Search

Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it  - 78 -



AI-SPRINT – Federated Learning for Privacy Preserving Machine Learning

“Vanilla” Neural Architecture Search

Zoph and Le (2017)

The controller samples convolutional 
networks. It predicts filter height, 
width, stride height, stride width, 
and number of filters per layer.

Each prediction is made by a 
softmax classifier. Its score is then 
used as input for the next time step.

Skip connections added by means of 
anchor points too
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The achieved results were impressive, with performance able to compete with the best 
human being designed architectures  (the leaderboard is on CIFAR10 dataset)

The cost involved the training of 12800 architectures from scratch until convergence, 
using 22400 GPU-days, and thus making the process not practical nor scalable 

“Vanilla” Neural Architecture Search

Zoph and Le (2017)
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Inspired by the use of repeating modules in successful architectures (e.g. Inception, 
ResNet), the NASNet search space defines a convnet architecture by repeating several 
times the same cell containing multiple operations predicted by the NAS algorithm

NASNet

Zoph et al. (2018)
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The NASNet search space learns two types of cells for 
network construction:

• Normal Cell: The input and output feature maps have 
the same dimension (like with convolutional layers).

• Reduction Cell: The output feature map has its width 
and height reduced by half (like with pooling layers).

Well-designed cell modules provide portability across 
datasets and easy scalability of model size by adjusting 
the number of cell repeats.

NASNet

Zoph et al. (2018)
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Predictors for each cell are made by B blocks (B = 5 in NASNet paper), where each block 
contains five predictive steps made by five different softmax classifiers corresponding to 
discrete selections of elements of a block.

NASNet

Zoph et al. (2018)
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The major advantages of the NASNet search space can be summarized as:

• The size of the search space is drastically reduced

• The cell-based architecture can be more easily applied to different datasets

• It provides strong evidence for a useful design pattern of repeated stacking of 
modules in architecture engineering (e.g., residual blocks in CNNs, multi-headed 
attention blocks in Transformers, etc.)

NASNet

Zoph et al. (2018)

Search 
Method

Search 
Space

Search 
Strategy

Search Cost
(GPU-days)

CIFAR10
Error

ImageNet
Error (mobile)

NAS 
Zoph and Le (2017)

Global REINFORCE 22400 3.65 -

NASNet
Zoph et al. (2018)

Cell-based PPO 2000 3.41 26.0
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Progressive NAS (PNAS) frames the NAS problem as a progressive search for increasingly 
complex models via Sequential Model-based Bayesian Optimization (SMBO) as its
search strategy instead of RL

Progressive NAS (PNAS)

Liu et al. (2018)
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PNAS makes use of the same search space of NASNet

• Each block is specified as a tuple of 5 elements, with PNAS 
considering only element-wise addition as the step 5

• Instead of setting the number of blocks B to a fixed number, 
PNAS starts with B = 1, a model with only one block in a cell, 
and gradually increases B

• The performance on a validation set is used as feedback for 
the training of a surrogate model for the prediction of the 
performance of novel architectures. This predictor can then 
be used to prioritise which models to evaluate next

• The predictor is implemented with RNN model to handle 
different input sizes, accuracy, and sampling efficiency

Progressive NAS (PNAS)

Liu et al. (2018)
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Neural Architecture Search Benchmark

Search 
Method

Search 
Space

Search 
Strategy

Search Cost
(GPU-days)

CIFAR10
Error

ImageNet 
Error (mobile)

NAS 
Zoph and Le (2017)

Global REINFORCE 22400 3.65 -

NASNet
Zoph et al. (2018)

Cell-based PPO 2000 3.41 26.0

PNAS
Liu et al. (2018)

Cell-based SMBO 225 3.41 25.8
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Pareto-Optimal Progressive NAS (POPNAS) extends PNAS 
realising a multi-objective search between accuracy and 
training time of the researched architectures such that 
Pareto optimality is satisfied

POPNAS is based on two predictors:

• One predictor for accuracy (LSTM with Self-Attention)

• One predictor for training time (Catboost)

POPNAS can can adapt to both image and time series
classification problems

Pareto-Optimal Progressive NAS

Falanti et al. (2023)

Matteo Matteucci // Politecnico di Milano // matteo.matteucci@polimi.it  - 88 -



AI-SPRINT – Federated Learning for Privacy Preserving Machine Learning

Pareto-Optimal Progressive NAS (POPNAS) extends PNAS 
realising a multi-objective search between accuracy and 
training time of the researched architectures such that 
Pareto optimality is satisfied

POPNAS is based on two predictors:

• One predictor for accuracy (LSTM with Self-Attention)

• One predictor for training time (Catboost)

POPNAS can can adapt to both image and time series
classification problems

Pareto-Optimal Progressive NAS

Falanti et al. (2023)
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Since search and evaluation independently for a large population of child models is 
expensive, one-shot architecture search extends the idea of weight sharing:

• Combine learning of architecture generation with learning of weight parameters

• Treat child architectures as different subgraphs of a supergraph with shared weights 
between common edges in the supergraph

Once the one-shot model is trained, it is
used to evaluate the performance of many
different architectures that are randomly
sampled by zeroing / removing operations.

This sampling process can be replaced
by Reinforcement Learning or Evolutionary
Algorithms

One-Shot NAS: Search + Evaluation

Liu et al. (2019)
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Differentiable Architecture Search (DARTS) allows architecture parameters and weights 
to be jointly trained via gradient descent by introducing a continuous relaxation and 
softmax operators on each path in the search super-graph

Differentiable Architecture Search

Liu et al. (2019)
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A cell is a directed acyclic graph (DAG) consisting of a topologically ordered sequence of 
𝑁 nodes. Each node has a latent representation 𝒙𝒊 to be learned. Each edge 𝒊, 𝒋 is 
associated with an operation 𝒐 𝒊,𝒋 ∈ 𝚶 that transforms 𝒙𝒋 to form 𝒙𝒊 :

𝒙𝒊 =෍

𝒋<𝒊

𝒐 𝒊,𝒋 (𝒙𝒋)

DARTS relaxes the categorical choice of a particular operation as a softmax over all 
operations; architecture search is reduced to learning mixing probabilities 𝛼 = {𝛼(𝑖,𝑗)}

ഥ𝒐 𝒊,𝒋 𝒙 = ෍

𝒐∈𝚶

exp 𝜶𝒊𝒋
𝒐

σ𝒐′∈𝚶 exp(𝜶𝒊𝒋
𝒐′))

𝒐(𝒙)

with 𝛼𝑖𝑗 a |Ο| vector containing weights between nodes 𝑖 and 𝑗 over all operations 

Differentiable Architecture Search

Liu et al. (2019)
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A bilevel optimization arises because we want to optimize both the network weights w 
and the architecture representation 𝛼 :

min
𝜶

𝓛𝒗𝒂𝒍(𝒘
∗ 𝜶 ,𝜶)

𝑠. 𝑡. 𝒘∗ 𝜶 = argmin
𝒘

𝓛𝒕𝒓𝒂𝒊𝒏(𝒘, 𝜶)

At step 𝑘, given the current architecture parameters 𝜶𝒌−𝟏, we first optimise the weights 
𝒘𝒌 by moving 𝒘𝒌−𝟏 in the direction of minimizing, with a learning rate 𝜆, training loss

min
𝒘

ℒ𝒕𝒓𝒂𝒊𝒏(𝒘𝒌−𝟏, 𝜶𝒌−𝟏)

Next, keeping the newly updated weights 𝒘𝒌 we update mixing probabilities to minimize 
the validation loss after a single step of gradient descent with respect to the weights:

𝑱𝜶 = 𝓛𝒗𝒂𝒍(𝒘𝒌 − 𝝀𝛁𝒘𝓛𝒕𝒓𝒂𝒊𝒏 𝒘𝒌, 𝜶𝒌−𝟏 , 𝜶𝒌)

Differentiable Architecture Search

Liu et al. (2019)
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DARTS finds an architecture with a low validation loss when its weights are optimized by 
gradient descent and one-step unrolled weights serve as a surrogate for 𝑤∗(𝛼)

Differentiable Architecture Search

Liu et al. (2019)Liu et al. (2019)
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Neural Architecture Search Benchmark

XXX

Search 
Method

Search 
Space

Search 
Strategy

Search Cost
(GPU-days)

CIFAR10
Error

ImageNet 
Error (mobile)

NAS 
Zoph and Le (2017)

Global REINFORCE 22400 3.65 -

NASNet
Zoph et al. (2018)

Cell-based PPO 2000 3.41 26.0

PNAS
Liu et al. (2018)

Cell-based SMBO 225 3.41 25.8

DARTS
Liu et al. (2018)

Super-
network

Weight Sharing 
+ SGD

4 3.00 26.9
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Once-for-All (OFA) builds on the ideas presented in DARTS, but aims to address the 
challenge of efficiently deploying neural network architectures on different hardware 
platforms with different computational requirements

Once-for-All

Cai et al. (2020)
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The key contribution of OFA is architecture decoupling; instead of optimizing both 
architecture & weights simultaneously, as in DARTS, OFA separates the process in two:

• OFA trains a single large neural network, referred to as the super-network, 
encompassing all possible sub-networks

• OFA derives specialized sub-networks from it by selecting appropriate paths based on 
specific hardware constraints or resource budgets.

Once-For-All

Cai et al. (2020)
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OFA uses the Progressive Shrinking (PS) optimization strategy; this strategy not only 
enables the acquisition of excellent starting points for sub-network extraction but also 
concentrates the computational load into a single end-to-end training process

The algorithm begins by defining the maximal network, which includes all PS parameters 
set to their maximum values. Subsequently, the PS training steps and phases are 
executed sequentially

The PS algorithm is organized into four elastic steps, each comprising multiple phases. 

Once-For-All

Cai et al. (2020)
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The first step, Elastic Resolution, involves randomly varying the size of input images

The second step, Elastic Kernel Size, gradually reduces the maximum kernel size for 
convolutional operators across the entire network

Once-For-All

Cai et al. (2020)
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The third step, Elastic Depth, progressively decreases the minimum depth achievable for 
sub-networks

Finally, the fourth step, Elastic Width, aims to reduce the number of filters available for 
each convolutional layer

Once-For-All

Cai et al. (2020)
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It is possible to sample sub-networks to extract their configuration encoding, and train 
surrogate models to enhance EA effectiveness in identifying the most suitable and 
performing sub-network according to different hardware constraints

Once-For-All

Cai et al. (2020)
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Neural Architecture Search Benchmark

XXX

Search 
Method

Search 
Space

Search 
Strategy

Search Cost
(GPU-days)

CIFAR10
Error

ImageNet 
Error (mobile)

NAS 
Zoph and Le (2017)

Global REINFORCE 22400 3.65 -

NASNet
Zoph et al. (2018)

Cell-based PPO 2000 3.41 26.0

PNAS
Liu et al. (2018)

Cell-based SMBO 225 3.41 25.8

DARTS
Liu et al. (2018)

Super-
network

Weight Sharing 
+ SGD

4 3.00 26.9

OFA
Cai et al. (2020)

Super-
network

Weight Sharing 
+ EA

(50 +) 1.67 - 20.0
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Neural Architecture Transfer (NAT) builds on OFA framework as an adaptive post-
processing replacement of the original sub-network extraction. NAT progressively 
transforms a pre-trained generic super-network into a task-specific super-network

Neural Architecture Transfer

Lu et al. (2021)
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To speed-up the super-network adaptation process, NAT selectively fine-tunes only 
those parts of the super-network that correspond to sub-networks whose structures can 
be directly sampled from the current trade-off front distribution.

NAT's multi-objective evolutionary search is guided and accelerated by a performance 
prediction model updated online with only the best sub-network configurations

Neural Architecture Transfer

Lu et al. (2021)
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Neural Architecture Search Benchmark

Search 
Method

Search 
Space

Search 
Strategy

Search Cost
(GPU-days)

CIFAR10
Error

ImageNet 
Error (mobile)

NAS 
Zoph and Le (2017)

Global REINFORCE 22400 3.65 -

NASNet
Zoph et al. (2018)

Cell-based PPO 2000 3.41 26.0

PNAS
Liu et al. (2018)

Cell-based SMBO 225 3.41 25.8

DARTS
Liu et al. (2018)

Super-
network

Weight Sharing 
+ SGD

4 3.00 26.9

OFA
Cai et al. (2020)

Super-
network

Weight Sharing 
+ EA

(50 +) 1.67 - 20.0

NAT
Lu et al. (2021)

Super-
network

Weight Sharing 
+ EA

(50 +) 6.25 1.60 19.5
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